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Abstract—Unsteady one-dimensional heat and mass transfer with phase change in a porous slab is

analytically investigated. It is shown that for a large class of problems the rate of motion of the wet zone

can be decoupled from the transient change in the temperature and species fields, and the unsteady process

can be reduced to that of quasi-steady fields in time-dependant domains. Analytical results are presented

for mobile and immobile condensates. Reasonable agreement between the analytical solutions and exper-
imental data is obtained.
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1. INTRODUCTION

CURRENT interest in simultaneous heat and mass
transfer with phase change in porous media stem from
a spectrum of applications ranging from drying tech-
nology to design of energy efficient buildings. An area
which has received considerable attention is related to
the genesis of liquid water in open pore insulations
and its effect on heat transfer through the building
shell. In general, the source of liquid water in insu-
lations can be related to water leakage or vapor con-
densation in the insulation package. In both instances
the dynamics of heat and mass transfer in partially wet
porous media is of significant importance to design of
insulation packages and construction technology.

Simultaneous heat and mass transfer has been
extensively studied for various systems [1-4]. These
studies have been recently extended to condensation
and liquid diffusion in open pore insulations [5-8].
Moisture migration in the presence of temperature
gradients has been analyzed by Eckert and co-workers
(5, 6} and Huang [7]. Condensation in insulations was
first rigorously studied by Ogniewicz and Tien [8),
where the coupling between temperature and con-
centration of condensing vapor was taken into
account. Vafai and co-workers [9, 10] have recently
obtained numerical solutions to one- and two-dimen-
sional coupled transport equations. Experimental
investigations of condensation in porous media, in
contrast to modelling studies, have been relatively
limited [13~17]. Whereas sophisticated models have
been employed for solution of equations governing
condensation in porous media, comparison of mod-
elling results with experimental data have been scar-
cely reported.

In a previous publication [18], one-dimensional
transport of heat and mass with phase change in a
porous slab was studied, and analytical solutions for

two limiting regimes of condensate diffusivity were
obtained. In this work, the analysis is extended to
unsteady transport processes. In the following the
formalism for analytical solution of a large class of
transient problems is presented, and the obtained
results are compared with experimental results of the
authors [17] and Thomas et al. [16].

2. ANALYSIS

Unsteady diffusion of heat, vapor and liquid is con-
sidered in a one-dimensional porous slab of thickness
Ly, Fig. 1, with temperature and vapor concentration
boundary conditions (T}, C;) and (T}, Cy;). Moisture,
with an initial liquid content (by volume) distribution
of 8(z), is assumed to occupy a single continuous zone
(the ‘wet zone’) in the slab with boundaries at z = L,
and L,. The unsteady process starts from a set of
initial temperature, vapor concentration and liquid
{condensate) content distributions and boundary con-
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FiG. 1. Temperature and vapor concentration in a one-
dimensional slab with a condensation region.
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NOMENCLATURE
(o vapor concentration ¥ he/RT,
C*  saturation vapor concentration n dimensionless temperature,
G YT (T-TH(T,—Ty)
¢ specific heat n dimensionless temperature,
Dy, mean liquid diffusivity (T-T)/(T,—T))
D,, diffusivity of liquid and vapor, 0 liquid content
respectively 0. critical liquid content
hy,  latent heat of condensation vy latent heat transport coefficient,
Ji.  liquid and vapor mass flux, respectively QB e+
k thermal conductivity o density
Ly total length of the slab ® yBn/(1+ fn)
Lo location of the warm boundary of the Q heCpc,T..
condensation region
L, location of the cold boundary of the
condensation region Subscripts
Le Lewis number I variable associated withz = 0
T, reference temperature, (T, + T,)/2 I variable associated with z = L,
T; reference temperature, (To+ T,)/2 | liquid
t time m matrix
x length of scale in the condensation region r reference
z length scale in the slab. v vapor
0 variable associated with z = L,
Greek symbols 1 variable associated with z = L,.
B non-dimensional temperature drop,
(Ti+ T/ T,
B non-dimensional temperature drop, Superscripts
(To=T)/T: dimensional variable
r volumetric condensation rate, parameter evaluated in reference to the

condensation region.

ditions which lead to a steady-state solution other
than the initial condition. During the transient, the
temperature, vapor concentration, and liquid content
fields evolve towards a new steady state accompanied
by changes in the location and size of the wet zone.
The transport of heat and the species (vapor and
liquid) are presently considered to be by diffusion
only, and thus convective effects due to condensate
motion and air infiltration are not considered. The
limitations of this assumption are established in ref.
[19]. The conservation equations, using a phenom-
enological definition of liquid diffusivity D,, are

0T oT
km%’f +rhf| = pmcmst_ (l)
oc oC
P T=% @
) i) o0
po5 [Dn(e) 5] +T=pdo &)
subject to the boundary conditions
I'=T, C=C, z=0
IT'=Ty, C=Cy z=1L. 4)

In the above subscripts m, v, and 1 denote properties
of the medium, vapor, and liquid, respectively, and I
is the volumetric condensation rate. All other terms
are defined in the Nomenclature. In the wet zone the
liquid and vapor are in thermodynamic equilibrium
and, thus, the vapor is at the saturation concentration
(denoted as C*) corresponding to the local value of
temperature: C(z) = C*(7(z)). The liquid content
and condensation rate are zero in the dry regions. In
the present formulation it is implicitly assumed that
the air-vapor mixture is dilute and there are no effects
associated with changes in the mixture density across
the slab.

The solution of the above equations at steady state
requires calculation of the location of the wet zone,
and the temperature, vapor concentration and con-
densate content fields in the porous slab. This problem
has been solved in ref. [18], where two spatially steady-
state regimes corresponding to mobile and immobile
condensates were identified. The non-linear coupling
between the conservation equations appear to pre-
clude the analytical solution of the complete unsteady
equations. Nevertheless, as the diffusive time-scales
controlling the transient behavior of the three T, C,
and @ fields are different, for some class of problems,
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from the ones controlling the motion of the wet zone
boundaries, the two phenomena may be decoupled.
It will be shown later that for a large group of system
parameters the rate of motion of the wet zone is much
slower than the diffusive transients in C, 7, and @
fields. Thus, the solution to the present problem is
obtained through calculation of quasi-steady fields in
time-varying domains.

The approach to the solution of the equations is
similar to that of the steady-state conditions given in
ref. {18]. The quasi-steady T and 8 fields in the wet
zone {the C field in the wet zone is uniquely deter
mined by the temperature distribution in that region)
are obtained in terms of the (time-varying) positions
and temperatures of the wet zone boundaries. By
applying energy and mass continuity at the wet zone
boundaries the temperature and vapor concentration
fields in the wet and dry regions are matched at the
wet-dry interfaces, and the temperatures and vel-
ocities of the wet zone boundaries are obtained. The
resulting equations are numerically integrated in time
1o obtain the temporal evolution of the system.

The quasi-steady temperature and vapor con-
centration fields in the wet zone are obtained by com-
bining steady-state forms of equations (1) and (2), and
using the Clausius~Clapeyron relationship between
saturated vapor and temperature. The (as of yet
unknown) wet zone boundary temperatures T, and
T,, and positions L, and L, are used to non-
dimensionalize the temperature

To+T,
T=—=

=TT,

and the length scale (¥ = x/{(L,;—L,)) in this region.
The resulting non-linear differential equation for the
temperature field in the wet zone is solved by a per-
turbation solution technique [18] yielding

, 1 _ expAx~1
n—ﬁ[t-—x— ]

exp i —1
In the above 4" is the latent heat transport term which
denotes the ratio of heat released by condensation of
vapor to heat conducted across the wet zone in the
absence of condensation. Equation (5) is shown to be
accurate for 2’ < 6.

The wet zone boundary temperatures and locations
are obtained by matching the temperature and con-
centration fields in the wet and dry regions. These
matching conditions are influenced by the mobility of
the condensate. In the solution to the steady-state
equations it was shown that two distinct solution
regimes exist for the mobile and immobile condensates
{18]. In the following the two condensate mobility
limits are considered separately.

&)

2.1. Immobile condensate
Energy and vapor mass balance for this case at
z = Lgare
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dr* T3-T, dL,
b gz, L, e dE=Ledg ©
and
dc¥| C3—C _ !
D, o iLo“Dv I, - 000(z = L, I)E‘-
™

Equations (6} and (7) relate the motion of the bound-
ary z = Ly(#) to the balance of energy and diffusion
of vapor at that boundary. In the above T* indicates
saturation temperature, thus C* and T* are related
by the Clausius-Clapeyron relationship. Similar
equations may be written at z = L (?)

éT*} 2&]‘__?; dLS
km dz z;_{“km LT_L‘( - &fxpiég(z = L;,f}—é—?
®
and
dc*| Cy—Ct dL,
D, iz it,u VLoL, P8z = Ll’:}?;'

©)

The liquid content at wet zone boundaries are deter-
mined from equation (6) by setting D, equal to zero

a8

pdg = (10)

By combining equations (6) and (7) the dL/dr term
may be eliminated. Using the Clausius—Clapeyron
relationship

C* = C¥exp(®)

and the identities

di - L[""Lo
=L (1n
dn __Tg"Tg
dy ~ T,~Ty 12

the following equation is obtained :
Q
He~M+ _f.e—ﬁ [exp (®@;) — A, exp (By)]

1 Q
=- 5{1 + "L_Z(l +Bno)~exp (d’o)]

Lo TQ—T‘ I‘{:’
% L;‘-Lg n—ng[ +ex‘)£’_ i}‘ (13)

In the above n is the temperature variable non-
dimensionalized by the slab boundary values, Le the
Lewis number, and A, the relative humidity at z = 0.
All other terms are defined in the Nomenclature.

An equation similar to equation (13) is obtained at
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z = L, by combining equations (8) and (9)
Q

M=+ Ieh [hy exp (®y) —exp (@)

1 103
-- 5[1+ (1) exp (¢.)]

L Hexpd ] 14)

exp i —1

Ly To—n[
Li=Ly T,—=Ty

Equations (13) and (14) relate the temperatures at the
boundaries of the wet zone (17, and n,) to the location
of the wet zone.
By writing the dC*/dz terms in equations (7) and
(9) as
dc* dC*dT*
dz _ dT dz
using the d7*/dz terms from the corresponding energy
equations, and the Clausius—Clapeyron equation for
dC*/d T the rates of motion of the wet zone boundaries
are obtained in terms of conditions present at the wet—
dry interfaces

T2
e(z.—.L.,z)d—(l—&.f'—)—

= 2{[exp (P () —hy exp (Oy)

+yB(1+Bny) 2 exp () (m "'ll)]/

[1+ Q7(1+ll?r1\)"exp (‘lh)]}

Te (15)

and

=2 {[CXP (©y) —hy exp (P)
+yB(1 +Bno) =2 exp (o) (1 —10)] / '

|1+ 3+ pr e @)} 0o

where

SE FE

L,

L=

and the non-dimensional time-scale is

D:tC?
L} pd
Equations (13)—(16) along with the temperature

f=

an
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distribution of equation (5) completely describe the
transient motion of the wet zone and the quasi-steady
evolution of the three fields. Starting with an initial
condition of T, C, and 6 fields with a wet zone located
somewhere inside the slab, the new location of the wet
zone boundaries can be obtained from equations (15)
and (16). The new locations are then used to calculate
the temperature conditions at the new boundaries of
the wet zone and the liquid content is updated. The
new values are used for the calculation of the next
location of the wet zone. The time integration is con-
tinued until a new steady state is reached.

2.2. Mobile condensate

The present model of condensate diffusion is based
on the postulate that above a critical liquid content
(6.) the pendular condensate drops coalesce and are
driven by surface tension forces from regions of higher
liquid content to drier regions. During the transient
motion of the wet zone boundaries liquid contents in
excess of 0, lead to the efflux of condensate towards
the wet—dry boundaries. At the wet-dry boundaries
the condensate effluxes are evaporated, and the liquid
content is equal to the non-diffusive component of the
condensate 8.. These conditions modify the boundary
mass and energy balance equations of the previous
section (equations (6)—(9)) into

atz= 1L,
dar* T,—T, . dL
g, K °L0 F= hedo+hepdf— 0 (18)
and
dc* Cr-G _ dL,
Dv-d‘;Lq—Dv L. = "Jo"P|59c? (19
andatz= L,
dr* Tu—T, d.él
km—d—z'*Ll—-km—Lr—_:—L—l— —hrg1.+hrgp|5ﬂc ar
(20
and
dC"‘ CII—CI*__ dLl
DV—E—L‘—DV L-r-"Ll -J,-—p,&@c & . (21)

Similar to the previous section the dL o/df terms can
be eliminated by combining energy and mass con-
tinuity terms at the boundaries. As the condensate
efflux terms cancel out, the equations relating the wet
zone boundary temperatures and locations become
identical to those obtained for the immobile con-
densate (equations (13) and (14)), except for the
difference in the values of 8(z = L,, L,). The remain-
ing two equations for the rate of motion of the wet
zone boundaries are obtained along the lines described
in the previous section
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d(1-L))?
dr

=2 {[exp (@) —hy exp (@)

8.

+78(1 +ﬁ'h)—2 €xp (‘bl)(ﬂn"'h)]/

[+ Zasmoreen]}

=L

D (22)

=2 {[exP (Do) —hy exp (@)
+yB(1+ fng)~ 2 exp (‘po)(ﬂo—ﬂ\)]/

[+ L s o]}

-2 D.C*' 23)
The condensate continuity is given by equation (3)
where for mathematical simplicity a mean liquid
diffusivity is used
o0 o0

P0D,, Fr= P|557~
Equations (13), (14), and (22)~(24) describe the tran-
sient motion of the wet zone boundaries in the pres-
ence of a mobile condensate.

e

3. TIME-SCALE ANALYSIS

The time-scale for the motion of the wet zone
boundaries are obtained by inspection of equations
(15) and (16), for the immobile condensate, and equa-
tions (22) and (23) for the mobile condensate,

3.1. Immobile condensate

In equations (15) and (16) the terms on the right-
hand side are of the order of 1 for water vapor diffus-
ing in air (conditions present in high void fraction
open pore porous materials). The time-scale for the
motion of the wet-dry boundaries, therefore, are

Lipé
To = %g,-o@ = Ly) (25)
—L)?pd
= S.L_T_D_vc_;;._ﬂ_e(z =L,). 26)

In order to establish the criterion for the validity of
the quasi-steady model, the time-scale for the motion
of the boundaries must be compared with the diffusive
time-scales. For an immobile condensate, the diffusive
time constants are

Ly= (Lo, Ly—Lg, Lr—~Ly). @7

For water vapor diffusing in a high void fraction sys-
tem Le is of the order of one, and thus, the con-
centration and heat diffusive time-scales are nearly
identical. The ratio of 1y and 1, to 7, for various length
scale combinations is presented in Table 1. For the
motion of the wet zone boundaries to be much slower
than the diffusive time constants, the ratios of Table
1 must be much larger than one. This condition indi-
cates that a relationship between the length scales and
the liquid content at the wet-dry boundaries must be
satisfied. Specifically, for a fixed wet zone size and
location the liquid content at the wet—dry boundaries
must exceed a minimum value to insure that the rate
of motion of the wet zone boundaries is slower than
the diffusion of heat and vapor. For a system with
similar wet and dry region sizes, the constraint for the
validity of the model reduces to a relationship between
the local liquid content at the wet~dry boundaries and
the ratio of the vapor and condensate densities

C#

69(2 = Lo, L;) el "p‘r" . (28)
i

Table 1. Ratio of diffusive and wet~dry boundary motion time scales

% By Ly, Téb, Ly T8,

T c? Li—Ly| C* L—-L | C*

n Ly—~L; P 3p, Ly—L, J 3p8, 908,

i) L, cr Li~L,| C*¥ c?

% Dy 5p8. D[ Lo Tanb, b L, Tépe.
% b, ¢ D,J\L,—L,| C* D,|Li—-L,| C*
4 DfL-LT e Di[Lr=L, | 50, D, 90,

T D,| L, C* D,L,-L,| C? D, ¢
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The above implies that for water vapor diffusing in a
fiberglass insulation (characterized by 0 values close
to unity) liquid content at the wet-dry boundaries
must be larger than 0.1%.

The ratios of Table 1 indicate that as the sizes of
the dry regions or the wet zone decrease the minimum
value of 6(z = L,, L) increases. However, as the
value of 6 cannot exceed 1, the present results become
invalid for vanishingly small wet and dry regions. It
must be noted, however, that in cases where either or
both of the dry regions are completely absent, for
example when a vapor barrier is located on one of the
slab boundaries or the slab is entirely wet with vapor
barriers on both boundaries of the slab, the above
criteria involving the length scales of the non-existing
regions do not apply. Under such conditions only the
non-zero length scales must be used to establish the
validity of the present quasi-steady model.

3.2. Mobile condensate
For mobile condensates, the terms in equations (22)
and (23) including the liquid flux terms must be evalu-
ated. The steady-state liquid content profile for the
case of a mobile condensate in the wet zone is [18]
D,C* Le B [1 ( exp A'%— 1)]
exp A —1

6@ =0+505 @ |2\F”
29)

where 6. is the critical liquid content below which
condensate diffusion is absent. Using J, = — D,d6/dx,
the liquid flux terms may be related to other system
parameters as

JoLo Lef expd’'—1-4
D,C* Q@ 2expi-—1) (30)
and
JWL=Ly) Lef (¥—1)expi'+1 an

D,C* ~ Q  2expi—1)

Evaluating the above terms for the transport of mois-
ture in open pore insulations indicates that the liquid
flux terms in equations (22) and (23) are of the order
of unity. Thus, for the mobile condensate the time-
scales for motion of the boundaries are the same as
the ones for the immobile condensate, i.e. equations
(25) and (26). The diffusive time-scale for condensate
diffusion is

(Ll - Lo)z

D, (32)

=
The ratios of wet zone motion to diffusive time-scales
for the mobile condensate are similar to those of the
immobile condensate with the additional terms relat-
ing liquid diffusivity to the rate of motion of the
boundaries (to/1, and 7,/t;). They are defined in Table
1. Inspection of Table 1 indicates that for the mobile
condensate the minimum value of liquid content at
the wet—dry boundaries (6.) is related to the ratio of
liquid and vapor diffusivities, as well as the length scale

and vapor—condensate density ratios. The extent of
validity of the quasi-steady model both in terms of
the minimum value of 6, and the length scales is,
therefore, entirely controlled by the diffusivity of the
condensate.

4. CASE STUDY

In the following the methodology developed in this
work is applied to the drying of a porous slab for the
two regimes of liquid diffusivity. The liquid diffusivity
is taken to be equal to the vapor diffusivity so that the
quasi-steady requirements are satisfied. The analysis is
conducted for high void-fraction fiberglass insulations
and, thus, thermophysical properties of air at room
temperature are used in the calculations. Other
examples such as the effect of vapor barriers on un-
steady accumulation of condensate and partial drying
of wet slabs are given in ref. [17].

4.1. Problem statement

The initial conditions for the transient analysis are
obtained from the first spatially steady solution case
(D, = 0) study of ref. [18], corresponding to the fol-
lowing slab boundary conditions:

T, = 32°C (90°F)
Ty = —4°C (25°F)
e = 90%

By = 90%.

The initial liquid content distribution for the immobile
condensate case corresponds to a 4000 h long con-
densation at the above conditions in a 1 ft wide fiber-
glass slab (Fig. 2). The spatial integral of the initial
liquid content for the mobile condensate is equal to

o

i i s — e L L A
0 01 0.2 0.3 0.4 0.5 0.8 0.7 0.8 09 10

b4

F1G. 2. Liquid content distribution for immobile and mobile
condensates
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Fi1G. 3. Non-dimensional temperature profile during tran-
sient relocation of the wet zone corresponding to immobile
condensate: D,t/L} = 1000.

that of the immobile limit, yet its distribution obeys
equation (29).

The transient analysis begins by step changes in the
slab boundary conditions from the above to

T, = 16°C (60°F)
Ty = 26°C (80°F)
hy = 80%
hy = 85%.

With the new boundary conditions the locations of
the hot and cold boundaries of the slab are effectively
replaced. The above boundary conditions do not pro-
vide for the existence of a wet zone, and, thus, the
boundaries of the wet zone evolve towards each other
until all the moisture in the slab is evaporated.

4.2, Results

The temperature fields in the slab for both regimes
of liquid diffusivity at D,t/L} = 1000 are shown in
Figs. 3 and 4, respectively. In both cases the tem-
perature gradients are discontinuous at the wet—dry

0.5
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|
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Fi6. 4. Non-dimensional temperature profile during tran-
sient relocation of the wet zone corresponding to mobile
condensate: D,t/L} = 1000.

10
o9 L, 4
0.8 \ 1
o7 \\:::\\.\ ]
0.8 4
L T
a.5F /'__‘_.,.—o—-v —__.__..:—, h
0.4 Mc—"' ]
oal g
[
0.2+ o g
[X]S E
o i s i 1
o s 6 [ 20
E‘I_t x 10°
Ly

Fic. 5. Evolution of the wet-zone boundaries for mobile (@)
and immobile condensates ().

boundaries reflecting absorption of energy by the
evaporating condensate. During the transient motion
of the boundaries condensation continuously occurs
in the wet zone. However, the magnitude of con-
densation is negligible in comparison with the initial
liquid content. The evolution of the wet zone bound-
aries is shown in Fig. 5. The difference in the rate
of motion of the boundaries for the two types of
condensate reflect both the initial liquid content dis-
tributions and the condensate mobility. The tem-
perature field in the slab reaches steady state in
approximately the same time for both types of con-
densate, suggesting that the total mass of condensate,
as opposed to its mobility, controls the drying period.
The analytical solution is carried only up to the stage
where the size of the wet zone is sufficiently large for
the quasi-steady model to be valid.

5. EXPERIMENTAL RESULTS

In this section the analytical solutions developed in
this study are compared with experimental results on
heat and mass transfer with phase change in fiberglass
insulations.

5.1. Moisture migration in a porous slab with imper-
meable boundaries

Diffusion of heat and mass through a medium den-
sity wetted insulation sample has been studied by
Thomas et al. {16]. The experiment consisted of uni-
formly wetting six layers of insulation and stacking
them together to form a continuous slab. The slab
was then heat-sealed in a plastic film. The test section
was inserted into a guarded hot plate apparatus and
subjected to one-dimensional temperature gradients.
The temperature field inside the slab was monitored
with thermocouples and the liquid content was mea-
sured at regular intervals through disassembly of the
slab and measurement of the weight of each of the six
layers. The experimental conditions are given in the
Appendix.

The analysis of Thomas ef al.'s data by the present
model is obtained by neglecting the presence of the
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Fic. 6. Comparison of data of ref. {I6] with the present
model and that of Thomas et af. [16].

dry regions and imposing zero mass flux conditions
at the slab boundaries. The condensate is assumed to
be immobile. The results obtained from the analytical
solution of the governing equations are compared
with the measured temperature profile in the slab in
Fig. 6. The results of the numerical solution of the
governing equations by Thomas et al. are also pre-
sented in Fig. 6. The agreement between both models
and the experimental data is extremely good. In Figs.
7 and 8 the calculated transient liquid content fields
are compared with two experimental sets of data cor-
responding to an initial moisture content (dry basis)
of 50 and 60%, respectively. The present model
appears to predict the liquid content profile more
accurately than the numerical model of ref. [13] at low
liquid content levels (Fig. 7). Both models, however,
appear to mispredict the liquid content profiles at
high moisture levels (Fig. 8). This discrepancy may be
related to liquid diffusion under gravity and capillary
forces at high liquid contents [19].

5.2. Moisture migration in a porous slab with one vapor
barrier

This experiment was performed by the authors and
is reported in ref. [17]. In this experiment a fiberglass
test section with a known liquid content distribution
was placed inside 2 Hot-Cold Box, and the cold side
of the specimen was covered by a vapor barrier. The
Hot—Cold Box consists of two temperature and
humidity controlled chambers connected through the
specimen. A complete description of the system is
given in ref. [17], and the experimental conditions are
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v Data, 2+ 0.92
o Thomas Mogel 2 - 0.92
o Thomas Model 2 - 0.75

N
& a0 ?2 ~092
2 o Quasi-steady Model |
g /2018
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&
2
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Fic. 8. Moisture distribution change with time. Data of
Thomas et al. [16], run No. 2.

given in Table 2. The initial measured and modeled
liquid content distributions are shown in Fig. 9. In
this study liquid water was introduced close to the
‘hot’ side of the sample, and the boundary conditions
were chosen as to provide for the evaporation of the
liquid from this region and its recondensation towards
the ‘cold’ impermeable side of the slab. The 7, C, and
8 fields and the location of the wet zone are calculated
by the present model through solution of the govern-
ing equations in the wet zone and one dry zone
(the region adjacent to the hot side of the slab), and
matching of the solutions at that boundary.

The temperature profile in the sample at two differ-
ent times are shown in Figs. 10 and 11. The present
model predicts the location of the wet-dry boundaries
{corresponding to the discontinuous change in the
temperature gradient) relatively well. Yet, the mea-
sured temperature profiles in the wet zone exhibit
larger curvatures than the calculated values. The cur-
vature of the temperature profile is related to evap-
oration—condensation in the wet zone, and is reflected
in the value of 2’ in equation (5). Thus, the discrepancy
between predicted and observed profiles may be
related to the values of thermophysical properties
used in the calculations, where the effect of water on
parameters such as thermal conductivity of the sample
are not included. In Fig. 12 the measured final liquid
content distribution in the slab is compared with the
theoretical predictions. The disagreement between the
theoretical and experimental observations may be
related to the high value of liquid content at the final
stages of the process which could result in liquid

6.10
o Oata
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0.08
0 s Bt
0.04 §
E/( Liquid Content Distribution
0.02 L Used in Model ]
§
Q L i FY —.
(] 0.2 0.4 0.6 08 10
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FiG. 7. Moisture distribution change with time. Data of FiG. 9. Initial liquid content distribution in the experiment

Thomas ez al. {16}, run No. 1.

of Section 5.2.
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Table 2. Experimental conditions

T, Ty hy hy Thickness Duration
Experiment O O () (W) (mm) Material (h)
Section 5.1. 32 10 t t 41 medium 50
Vapor barriers density
on hot and cold fiberglass
sides. Initial insulation
condensate
content:
0.024 3]
Section 5.1. 31 10 t t 35 medium 120
Vapor barriers density
on hot and cold fiberglass
sides. Initial insulation
condensate
content:
0.051 (3}
Section 5.2. 43 17 0.35 t 51 medium 27
Vapor barriers density
on cold side. fiberglass
Initial insulation
condensate
content:
Fig. 9

t Vapor barrier at this location.

diffusion. Overall, considering that the results of Fig.
12 are obtained after a long time period through which
model inaccuracies would accumulate, the agreement
between the quasi-steady model and data is encour-

aging.

6. DISCUSSION

Unsteady simultaneous heat and mass transfer with
phase change in an open pore slab is considered and
analytical solutions for mobile and immobile con-
densates are presented. The criteria for the validity of
the analytical solutions are presented in terms of time-
scales characterizing the diffusive processes and
motion of wet-dry boundaries. It is shown that for

® Data
=~ Quasi-steady -
Madel

Temperature (*C)

¥4

FI1G. 10. Temperature profile in the experiment of Section
5.2, time = 23000 s.

immobile condensates the obtained solutions are valid
up to small liquid contents in the slab. For mobile
condensates, on the other hand, the range of validity
of the solutions is controlled by the diffusion
coeflicient of the condensate. The analytical solutions
are compared with various experimental results con-
ducted by the authors and others, and reasonable
agreements are obtained. The major discrepancy
between modelling and experimental results is related
to the temperature profile in the wet zone of the slab.
It appears that the present model underpredicts the
effect of energy release in the wet zone. This dis-
crepancy may be related to three factors. First, the
model does not consider changes in the thermo-
physical properties with moisture content. This

aSr
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FiG. 11. Temperature profile in the experiment of Section
5.2, time = 100000 s.
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* Daa
== Quasi~steady Model
0.3} 4
GAVE 0.2k .
a1
L] -
hd i A 2
Y TTBa TBE 0T 04 05 06 07 08 05 10
zZ
Fic. 12. Final liquid content distribution in the experiment
of Section 5.2.

may introduce appreciable errors in high liquid-con-
tent regions. Second, inhomogeneities in the fiberglass
insulation may lead to spatial variations in the prop-
erties of the slab. Third, the assumption of diluteness
of the air-vapor mixture may be inaccurate. Of these,
the first appears to exert a larger influence on the
model predictions. Correction of this model deficiency
is not undertaken in this study because there are no
reliable relationships between liquid content and
properties of fiberglass insulations. As the present
solutions involve various thermophysical parameter
groups, a rigorous sensitivity analysis of the model
predictions and comparison with other experimental
data appear to be necessary to identify the required
improvements of the model.
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TRANSFERT VARIABLE DE CHALEUR ET DE MASSE AVEC CHANGEMENT DE
PHASE DANS DES PLAQUES POREUSES: SOLUTION ANALYTIQUES ET RESULTATS
EXPERIMENTAUX -

Résumé—On étudie analytiquement le transfert variable de chaleur et de masse monodimensionnel avec
changement de phase dans une plaque poreuse, On montre que pour une grande classe de problémes, la
vitesse de déplacement de la zone séche peut étre découplée du changement des champs de température et
d’espéces, et le mécanisme peut étre réduit 4 celui de champs quasi-statiques dans des domaines dépendants
du temps. Des résultats analytiques sont présentés pour des condensats mobiles et immobiles. Un accord
raisonnable est obtenu entre les solution analytiques et les données expérimentales.
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INSTATIONARER WARME- UND STOFFTRANSPORT MIT PHASENWECHSEL IN
POROSEN SCHICHTEN—ANALYTISCHE LOSUNGEN UND EXPERIMENTELLE
ERGEBNISSE

Zusammenfassung—In einer pordsen Schicht wird der instationdre eindimensionale Wirme- und

Stofftransport mit Phasenwechsel analytisch untersucht. Es zeigt sich, daB fiir viele Probleme die

Bewegungsgeschwindigkeiten der feuchten Zone von den zeitlichen Verdnderungen der Temperatur- und

Konzentrationsverteilung abgekoppelt werden kann. Der instationdre ProzeB kann dadurch auf quasi-

stationdre Felder in zeitlich variablen Bereichen reduziert werden. Fir bewegliches und unbewegliches

Kondensat werden analytische Ergebnisse vorgestellt; die Ubereinstimmung mit experimentellen Daten
ist zufriedenstellend.

HECTALIMOHAPHBIA TEIJIO- H MACCOITEPEHOC C ®A30BBbIM IMEPEXOJIOM B
MOPUCTBIX CIIUTKAX: AHAJIMTUYECKHUE PEHIEHUA U SKCITEPUMEHTAJILHBIE
PE3VJIbTATBI

ABOTAIES —AHATHTHYCCKH HCCJICAYETCA HECTALMOHAPHLIA OOHOMCPHBLIE TEMNO- M MACCOMEPEHOC C

¢azoerM nepexonom B nopuctom cmTxe. [loxasano, 4To ana GoMbIOro Kiacca 3a1ad CKOPOCTD Nepe-

MCIICHHA BNAXHON 30HM MOXCT GBITH HC3ABHCHMA OT HECTAIHOHAPHOTO M3MEHEHHA monell Temme-

paTupsl u o6pa3iuos, a nepexomusili Nponecc MOXeT GBTh CBEACH X KBA3NCTALMOHADHBIM MOJAM B

3aBHCRIUMX OT BpeMenn obnactsx. IlpencraBnenst ananHTHYECKME pe3ynbTaTHl 1N NOABHAKHBIX H

HEMOABHKHLIX KOHICHCATOB. AHANHTAYCCKHE PCIlleHHS YAOBJICTBOPHUTENLHO COIJACYIOTCA C IKCHEpH-
MCHTANbHBIMH JAHHLIMH,
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