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Abstract-Unsteady onedimensional heat and mass transfer with phase change in a porous slab is 
analytically investigated. It is shown that for a large class of problems the rate of motion of the wet zone 
can be decoupled from the transient change in the temperature and species fields, and the unsteady process 
can be reduced to that of quasi-steady fields in timedependant domains. Analytical results are presented 
for mobile and immobile condensates. Reasonable agreement between the analytical solutions and exper- 

imental data is obtained. 

1. INTRODUCTION 

CURRENT interest in simultaneous heat and mass 
transfer with phase change in porous media stem from 
a spectrum of applications ranging from drying tech- 
nology to design of energy efficient buildings. An area 
which has received considerable attention is related to 
the genesis of liquid water in open pore insulations 
and its effect on heat transfer through the building 
shell. In general, the source of liquid water in insu- 
lations can be related to water leakage or vapor con- 
densation in the insulation package. In both instances 
the dynamics of heat and mass transfer in partially wet 
porous media is of significant importance to design of 
insulation packages and construction technology. 

Simultaneous heat and mass transfer has been 
extensively studied for various systems [14]. These 
studies have been recently extended to condensation 
and liquid diffusion in open pore insulations [5-81. 
Moisture migration in the presence of temperature 
gradients has been analyzed by Eckert and co-workers 
[5,6] and Huang [7J. Condensation in insulations was 
first rigorously studied by Ogniewicz and Tien [8], 
where the coupling between temperature and con- 
centration of condensing vapor was taken into 
account. Vafai and co-workers [9, IO] have recently 
obtained numerical solutions to one- and two-dimen- 
sional coupled transport equations. Experimental 
investigations of condensation in porous media, in 
contrast to modelling studies, have been relatively 
limited [13-l 71. Whereas sophisticated models have 
been employed for solution of equations governing 
condensation in porous media, comparison of mod- 
elling results with experimental data have been scar- 
cely reported. 

In a previous publication [ 181, one-dimensional 
transport of heat and mass with phase change in a 
porous slab was studied, and analytical solutions for 

two limiting regimes of condensate diffusivity were 
obtained. In this work, the analysis is extended to 
unsteady transport processes. In the following the 
formalism for analytical solution of a large class of 
transient problems is presented, and the obtained 
results are compared with experimental results of the 
authors [ 171 and Thomas et al. [ 161. 

2. ANALYSIS 

Unsteady diffusion of heat, vapor and liquid is con- 
sidered in a one-dimensional porous slab of thickness 
Lr, Fig. 1, with temperature and vapor concentration 
boundary conditions (T,, C,) and (T,,, C,,). Moisture, 
with an initial liquid content (by volume) distribution 
of&z), is assumed to occupy a single continuous zone 
(the ‘wet zone’) in the slab with boundaries at z = Lo 
and L,. The unsteady process starts from a set of 
initial temperature, vapor concentration and liquid 
(condensate) content distributions and boundary con- 

FIG. I. Temperature and vapor concentration in a one- 
dimensional slab with a condensation region. 
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NOMENCLAfURE 

vapor concentration 
saturation vapor concentration 

C+(K) 
specific heat 
mean liquid diffusivity 
diffusivity of liquid and vapor, 
respectively 
latent heat of condensation 
liquid and vapor mass flux, respectively 
thermal conductivity 
total length of the slab 
location of the warm boundary of the 
condensation region 
location of the cold boundary of the 
condensation region 
Lewis number 
reference temperature, (T, + T,,)/2 
reference temperature, (T,, f T,)/2 
time 
length of scale in the condensation region 
length scale in the slab. 

Greek symbols 

B nondimensional temperature drop, 

VI + T,,)/T, 
B non-dimensional temperature drop, 

U-0 - T,)IT: 

Y 
tl 

tt ’ 

f;, 
R 

h$RTr 
dimensionless temperature, 

(T- WV, - 7’~) 
dimensionless temperature, 

(T- T,)I(To- T,) 
liquid content 
critical liquid content 
latent heat transport coefficient, 
2y’2j?Q’/Le+ ~‘0’ 
density 

rBtll(l +Bs) 
h,,C,+lpc,T,. 

Subscripts 
I variable associated with z = 0 
II variable associated with z = & 
I liquid 
m matrix 
r reference 

x 
vapor 
variable associated with z = L,, 

1 variable associated with z = L,. 

Superscripts 
- 

dimensional variable 
I- volumetric condensation rate, parameter evaluated in reference to the 

(r;e F/fY)(1”/2)(exp (Vx)/exp (2) - I) condensation region. 

ditions which lead to a steady-state solution other 
than the initial condition. During the transient, the 
temperature, vapor concentration, and liquid content 
fields evolve towards a new steady state accompanied 
by changes in the location and size of the wet zone. 

The transport of heat and the species (vapor and 
liquid) are presently considered to be by diffusion 
only, and thus convective effects due to condensate 
motion and air infiltration are not considered. The 
limitations of this assumption are established in ref. 
[19]. The conservation equations, using a phenom- 
enological definition of liquid diffusivity D,, are 

k ‘T+fh -p c !?- m dzz fr - m m at (1) 

a2c ac 
D,-Q--~=~ 

a as 
~165 D,(O>-g +r =p,6; [ 1 

(3) 

subject to the boundary conditions 

T=T,, C=C,, z=O 

T= T,,, C=C,,, z=&. (4) 

In the above subscripts m, v, and I denote properties 
of the medium, vapor, and liquid, respectively, and I- 
is the volumetric condensation rate. All other terms 
are defined in the Nomenclature. In the wet zone the 
liquid and vapor are in thermodynamic equilibrium 
and, thus, the vapor is at the saturation concentration 
(denoted as C*) corresponding to the local value of 
temperature: C(z) = C*(T(z)). The liquid content 
and condensation rate are zero in the dry regions. In 
the present formulation it is implicitly assumed that 
the air-vapor mixture is dilute and there are no effects 
associated with changes in the mixture density across 
the slab. 

The solution of the above equations at steady state 
requires calculation of the location of the wet zone, 
and the temperature, vapor concentration and con- 
densate content fields in the porous slab. This problem 
has been solved in ref. [ 181, where two spatially steady- 
state regimes corresponding to mobile and immobile 
condensates were identified. The non-linear coupling 
between the conservation equations appear to pre- 
clude the analytical solution of the complete unsteady 
equations. Nevertheless, as the diffusive time-scales 
controlling the transient behavior of the three T, C, 
and 8 fields are different, for some class of problems, 



Unsteady heat and mass transfer with phase change in porous sfabs t65 

from the ones controlling the motion of the wet zone 
boundaries, the two phenomena may be decoupled. 
It will be shown later that for a large group of system 
parameters the rate of motion of the wet zone is much 
slower than the diffusive transients in G, Tf, and B 
fields. Thus, the solution to the present problem is 
obtained through calculation of quasi-steady fields in 
time+arying domains, 

The approach to the solution of the equations is 
similar to that of the steady-state conditions given in 
ref. fig]. The quasi-steady T and B fields in the wet 
zone (the G field in the wet zone is uniquely deter- 
mined by the temperature distribution in that region) 
are obtained in terms of the (time-varying) positions 
and temperatures of the wet zone boundaries. By 
applying energy and mass continuity at the wet zone 
boundaries the temperature and vapor concentration 
gelds in the wet and dry regions are matched at the 
wet-dry interfaces, and the temperatures and vel- 
ocities of the wet zone boundaries are obtained. The 
resulting equations are numerically integrated in time 
to obtain the temporal evolution of the system. 

The quasi-steady temperature and vapor con- 
centration fieids in the wet zone are obtained by com- 
bining steady-state,forms of equations (1) and (2), and 
using the Clausius-Clapeyron relationship between 
saturated vapor and temperature. The (as of yet 
unknown) wet zone boundary temperatures To and 
T,, and positions Lo and L1 are used to non- 
~mensionalize the temperature 

To+T, 

( i 
tl’ aa 

T-2 

T,- T, 

and the length scale (2 = xJ(L, -to)) in this region. 
The resulting non-linear d~~eren~al equation for the 
temperature field in the wet zone is solved by a per- 
turbation solution technique [ 181 yielding 

tl ‘=_ f x-g- E exp I’ff- f 

I expI’-l ’ c9 

In the above Y is the fatent heat transport term which 
denotes the ratio of heat released by condensation of 
vapor to heat conducted across the wet zone in the 
absence of condensation. Equation (5) is shown to be 
accurate for il’ < 5. 

The wet zone boundary temperatures and locations 
are obtained by matching the temperature and con- 
centration fields in the wet and dry regions. These 
matching conditions are influenced by the mobility of 
the condensate. In the solution to thle steady-state 
equations it was shown that two distinct solution 
regimes exist for the mobile and immobile condensates 
[lg]. In the following the two condensate mobility 
limits are considered separately. 

2.1. Immobile condensate 
Energy and vapor mass balance for this case at 

z = Lo are 

k dT* _k W--T, 
m dz L, m 

- = ~,,p,68(2 = Lo, I) --&- 
Lo 

dLo (6) 

and 

(7) 

Equations (6) and (7) refate the motion of the bound- 
ary z = L&t) to the balance of energy and diffusion 
of vapor at that boundary. In the above T* indicates 
saturation temperature, thus P and T* are related 
by the Clausius-Clapeyron relationship. Similar 
equations may be written at 2 = L,(t) 

and 

(9) 

The liquid content at wet zone boundaries are deter- 
mined from equation (6) by setting D, equal to zero 

p,S$= I-. 

By combining equations (6) and (7) the dL,/df term 
may be eliminated. Using the Clausius-Clapeyron 
relationship 

C = G: exp f@) 

and the identities 

di f.,-L* -=- 
df L1 

dtl To-TI -=- 
dtt’ T, -T,I 

the foIlowing equation is obtained : 

In the above rt is the temperatuw variable non- 
dimensionalized by the slab boundary values, Le the 
Lewis number, and hl the relative humidity at z = 0. 
All other terms are defined in the Nomenclature. 

An equation similar to equation (132 is obtained at 
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z = L, by combining equations (8) and (9) 

~Il-sl+~[h,,exp(~,,)-exp(~,)l 

= _- i l+~(l+/3~,)-2exp(@,) 
[ 1 

xE.$$[l+J$$]. (14) 

Equations (13) and (14) relate the temperatures at the 
boundaries of the wet zone (q,, and q ,) to the location 
of the wet zone. 

By writing the dC*/dz terms in equations (7) and 

(9) as 
dC* dC* dT* --- 
dz- dT dz 

using the dT*/dz terms from the corresponding energy 
equations, and the Clausius-Clapeyron equation for 
dC*/dTthe rates of motion of the wet zone boundaries 
are obtained in terms ofconditions present at the wet- 
dry interfaces 

e(z = L,,t) 
d(l-,)’ 

df 

= 2 kxp PI)-4 exp (@d 
i 

+uB(1+B~I)-2exP(~l)(~rr-t11)1 I 
[ 
l+$l+Bsd-‘w(@i) 

II 
(15) 

and 

tI(z = Lo, t) df 

= 2 I [exp (%) -h w PI) 

+rSU +I%)-~ exp (%Ntff -rldl I 
l+$l+Bgo)-‘exp(%) II (16) 

where 

and the non-dimensional time-scale is 

D,t C,* 

‘=z2 
(17) 

Equations (13)-(16) along with the temperature 

distribution of equation (5) completely describe the 
transient motion of the wet zone and the quasi-steady 
evolution of the three fields. Starting with an initial 
condition of T, C, and 8 fields with a wet zone located 
somewhere inside the slab, the new location of the we1 
zone boundaries can be obtained from equations (15) 
and (16). The new locations are then used to calculate 
the temperature conditions at the new boundaries of 
the wet zone and the liquid content is updated. The 
new values are used for the calculation of the next 
location of the wet zone. The time integration is con- 
tinued until a new steady state is reached. 

2.2. Mobile condensate 
The present model of condensate diffusion is based 

on the postulate that above a critical liquid content 
(0,) the pendular condensate drops coalesce and are 
driven by surface tension forces from regions of higher 
liquid content to drier regions. During the transient 
motion of the wet zone boundaries liquid contents in 
excess of 0, lead to the efflux of condensate towards 
the wet-dry boundaries. At the wet-dry boundaries 
the condensate effluxes are evaporated, and the liquid 
content is equal to the non-diffusive component of the 
condensate 0,. These conditions modify the boundary 
mass and energy balance equations of the previous 
section (equations (6)-(9)) into 

atz=L, 

and 

D dC* 
” dz L, 

_D G-G 
7-g-= -&-p,68,d$ (19) 

andatz=L, 

and 

(21) 

Similar to the previous section the df.,Jdt terms can 
be eliminated by combining energy and mass con- 
tinuity terms at the boundaries. As the condensate 
efflux terms cancel out, the equations relating the wet 
zone boundary temperatures and locations become 
identical to those obtained for the immobile con- 
densate (equations (13) and (14)) except for the 
difference in the values of O(r = L,, L ,). The remain- 
ing two equations for the rate of motion of the wet 
zone boundaries are obtained along the lines described 
in the previous section 
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e d(l-t;)’ 
E dt’ 

= 2 
i 

[exp (%) -hII exp (@it) 

+rS(l -t8C2 exp(W(rltr-rfk)I 
i 

[ 
l+~(l+Btlt)-zq7(~t) 

II 

and 

= 2 
I 

[exp (%) --hi exp (@J 

+vB(l +Bvo)-~ exp (~O)(ltO--‘ll)l 
/ 

-2%. (23) 
” I 

The condensate continuity is given by equation (3) 
where for ma~ematical simplicity a mean liquid 
diffusivity is used 

Equations (13), (IS), and (22)-(24) describe the tran- 
sient motion of the wet zone boundaries in the pres- 
ence of a mobile condensate. 

3. TIME-SCALE ANALYSIS 

The time-scale for the motion of the wet zone 
boundaries are obtained by inspection of equations 
(15) and (16), for the immobile condensate, and equa- 
tions (22) and (23) for the mobile condensate, 

3.1. Immobile condensate 
In equations (15) and (16) the terms on the right- 

hand side are of the order of 1 for water vapor diffus- 
ing in air (conditions present in high void fraction 
open pore porous mate~als). The time-scale for the 
motion of the wet-dry boundaries, therefore, are 

(25) 

In order to establish the criterion for the validity of 
the quasi-steady model, the time-scale for the motion 
of the boundaries must be compared with the diffusive 
time-scales. For an immobile condensate, the diffusive 
time constants are 

J%? 
rh =a 

L: 
r, = -i 

D” 

ti = (Lo,L,-L,,Lr--L,). (27) 

For water vapor diffusing in a high void fraction sys- 
tem L.e is of the order of one, and thus, the con- 
centration and heat diffusive time-scales are nearly 
identical. The ratio of rO and 7, to th for various length 
scale combinations is presented in Table 1. For the 
motion of the wet zone bundles to be much slower 
than the diffusive time constants, the ratios of Table 
1 must be much larger than one. This condition indi- 
cates that a relationship between the length scales and 
the liquid content at the wet-dry boundaries must be 
satisfied. Specifically, for a fixed wet zone size and 
location the liquid content at the wet-dry boundaries 
must exceed a minimum value to insure that the rate 
of motion of the wet zone boundaries is slower than 
the diffusion of heat and vapor. For a system with 
similar wet and dry region sizes, the constraint for the 
validity of the model reduces to a relationship between 
the local liquid content at the wet-dry boundaries and 
the ratio of the vapor and condensate densities 

cW(z = Lo, L,) > z * (28) 

Table 1. Ratio of diffusive and wet-dry boundary motion time scaIes 

70 

Th 

&4@0 

c, I 

Lo c 1 w. 
L,-Lo c: 

71 - LT-Li *m-4 k--t, %,e, 
rh t I Lo c* I [ I L,-L, c: 

TO - 

71 
4 Lo 

[ 1 
z &+@e -- 

Dv k-L, -?j- 

2 Q L-r-L, 26p,e, 4 h-b -- %e, 
7t D, Lo c: [ 1 
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The above implies that for water vapor diffusing in a 
fiberglass insulation (characterized by 6 values close 
to unity) liquid content at the wet-dry boundaries 
must be larger than 0.1%. 

The ratios of Table 1 indicate that as the sizes of 
the dry regions or the wet zone decrease the minimum 
value of 6(z = Lo. L,) increases. However, as the 
value of 6 cannot exceed 1, the present results become 
invalid for vanishingly small wet and dry regions. It 
must be noted, however, that in cases where either or 
both of the dry regions are completely absent, for 
example when a vapor barrier is located on one of the 
slab boundaries or the slab is entirely wet with vapor 
barriers on both boundaries of the slab, the above 
criteria involving the length scales of the non-existing 
regions do not apply. Under such conditions only the 
non-zero length scales must be used to establish the 
validity of the present quasi-steady model. 

3.2. Mobile condensate 
For mobile condensates, the terms in equations (22) 

and (23) including the liquid flux terms must be evalu- 
ated. The steady-state liquid content profile for the 
case of a mobile condensate in the wet zone is [18] 

exp li’f - 1 

expA’-1 

(29) 

where 6, is the critical liquid content below which 
condensate diffusion is absent. Using J, = - D@/ax, 
the liquid flux terms may be related to other system 
parameters as 

Job Lep’exp1’-1-E.’ ---=- 
L&C: R’ 2(exp A’- 1) (30) 

and 

J,(L,-L,,) Lep’(i.‘-l)exdj.‘+l _ 
D,C: = - qexp >_‘-I) . c3*) R 

Evaluating the above terms for the transport of mois- 
ture in open pore insulations indicates that the liquid 
flux terms in equations (22) and (23) are of the order 
of unity. Thus, for the mobile condensate the time- 
scales for motion of the boundaries are the same as 
the ones for the immobile condensate, i.e. equations 
(25) and (26). The diffusive time-scale for condensate 
diffusion is 

(32) 

The ratios of wet zone motion to diffusive time-scales 
for the mobile condensate are similar to those of the 
immobile condensate with the additional terms relat- 
ing liquid diffusivity to the rate of motion of the 
boundaries (r&r and 7,/q). They are defined in Table 
1. Inspection of Table 1 indicates that for the mobile 
condensate the minimum value of liquid content at 
the wet-dry boundaries (6,) is related to the ratio of 
liquid and vapor diffusivities, as well as the length scale 

and vapor*ondensate density ratios. The extent of 
validity of the quasi-steady model both in terms of 
the minimum value of 6, and the length scales is, 
therefore, entirely controlled by the diffusivity of the 
condensate. 

4. CASE STUDY 

In the following the methodology developed in this 
work is applied to the drying of a porous slab for the 
two regimes of liquid diffusivity. The liquid diffusivity 
is taken to be equal to the vapor diffusivity so that the 
quasi-steady requirements are satisfied. The analysis is 
conducted for high void-fraction fiberglass insulations 
and, thus, thermophysical properties of air at room 
temperature are used in the calculations. Other 
examples such as the effect of vapor barriers on un- 
steady accumulation of condensate and partial drying 
of wet slabs are given in ref. [ 171. 

4.1. Problem statement 
The initial conditions for the transient analysis are 

obtained from the first spatially steady solution case 
(0, = 0) study of ref. [18], corresponding to the fol- 
lowing slab boundary conditions : 

T, = 32°C (90°F) 

T,, = -4°C (25’F) 

h, = 90% 

h,, = 90%. 

The initial liquid content distribution for the immobile 
condensate case corresponds to a 4000 h long con- 
densation at the above conditions in a 1 ft wide fiber- 
glass slab (Fig. 2). The spatial integral of the initial 
liquid content for the mobile condensate is equal to 

mu 

FIG. 2. Liquid content distribution for immobile and mobile 
condensates 
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z 
FIG. 3. Non-dimensional temperature profile during tran- 
sient relocation of the wet zone corresponding to immobile 

condensate: &t/r: = 1000. 

that of the immobile limit, yet its distribution obeys 
equation (29). 

The transient analysis begins by step changes in the 
slab boundary conditions from the above to 

2-i = 16°C (60°F) 

Tl, = 26°C (80°F) 

h, = 80% 

ha = 85%. 

With the new boundary conditions the locations of 
the hot and cold boundaries of the slab are effectively 
replaced. The above boundary conditions do not pro- 
vide for the existence of a wet zone, and, thus, the 
boundaries of the wet zone evolve towards each other 
until all the moisture in the slab is evaporated. 

boundaries reflecting absorption of energy by the 
evaporating condensate. During the transient motion 
of the boundaries condensation continuously occurs 
in the wet zone. However, the magnitude of con- 
densation is negligible in comparison with the initial 
liquid content. The evolution of the wet zone bound- 
aries is shown in Fig. 5. The difference in the rate 
of motion of the boundaries for the two types of 
condensate reflect both the initial liquid content dis- 
tributions and the condensate mobility. The tem- 
perature field in the slab reaches steady state in 
approximately the same time for both types of con- 
densate, suggesting that the total mass of condensate, 
as opposed to its mobility, controls the drying period. 
The analytical solution is carried only up to the stage 
where the size of the wet zone is sufficiently large for 
the quasi-steady mode1 to be valid. 

4.2. Results 
5. EXPERIMENTAL RESULTS 

The temperature fields in the slab for both regimes In this section the analytical solutions developed in 

of liquid diffusivity at D,t/G = 1000 are shown in this study are compared with experimental results on 
Figs. 3 and 4, respectively. In both cases the tem- heat and mass transfer with phase change in fiberglass 
perature gradients are discontinuous at the wet-dry insulations. 

4 
FIG. 4. Non-dimensional temperature profile during tran- 
sient relocation of the wet zone corresponding to mobile 

condensate: L&r/G = 1000. 

Of: 0 3 0 ts 26 

%t 

-F *lo’ 
FIG. 5. Evolution of the wet-zone boundaries for mobile (e) 

and immobile condensates (M). 

5.1. Moistwe migration in a porous slab with imper- 
meable boundaries 

Diffusion of heat and mass through a medium den- 
sity wetted insulation sample has been studied by 
Thomas et al. [16]. The experiment consisted of uni- 
formly wetting six layers of insulation and stacking 
them together to form a continuous slab. The slab 
was then heat-sealed in a plastic film. The test section 
was inserted into a guarded hot plate apparatus and 
subjected to one-dimensional temperature gradients. 
The temperature field inside the slab was monitored 
with thermocouples and the liquid content was mea- 
sured at regular intervals through disassembly of the 
slab and measurement of the weight of each of the six 
layers. The experimental conditions are given in the 
Appendix. 

The analysis of Thomas et al.‘s data by the present 
model is obtained by neglecting the presence of the 
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FIG. 6. Comparison of data of ref. 1161 with the present 
model and that of Thomas et al. [ 161. 

dry regions and imposing zero mass flux conditions 
at the stab boundaries. The condensate is assumed to 
be immobile. The results obtained from the analytical 
solution of the governing equations are compared 
with the measured temperature profile in the slab in 
Fig. 6. The results of the numerical solution of the 
governing equations by Thomas er al. are also pre- 

sented in Fig. 6. The agreement between both models 
and the experimental data is extremely good. In Figs. 
7 and 8 the calculated transient liquid content fields 
are compared with two experimental sets of data cor- 
responding to an initial moisture content (dry basis) 
of 50 and 60%, respectively. The present model 
appears to predict the liquid content profile more 
accurately than the numericai model of ref. [ 131 at low 
liquid content levels (Fig. 7). Both models, however, 
appear to mispredict the liquid content profiles at 
high moisture levels (Fig. 8). This discrepancy may be 
related to liquid diffusion under gravity and capillary 
forces at high liquid contents [19]. 

5.2. Moisture migration in ~~oro~ stab with one vapor 
barrier 

This experiment was performed by the authors and 
is reported in ref. [17]. In this experiment a fiberglass 
test section with a known liquid content distribution 
was placed inside a Hot-Cold Box, and the cold side 
of the specimen was covered by a vapor barrier. The 
Hot-Cold Box consists of two temperature and 
humidity controlled chambers connected through the 
specimen. A complete description of the system is 
given in ref. [II, and the experimental conditions are 

Wta (h) 

FIG. 7. Moisture distribution change with time. Data of 
Thomas et 41. [16], run No. I, 

FIG. 8. Moisture distribution change with time. Data of 
Thomas et nl. [16], run No. 2. 

given in Table 2. The initial measured and modeled 
liquid content distributions are shown in Fig. 9. In 
this study liquid water was introduced close to the 
‘hot’ side of the sample, and the boundary conditions 
were chosen as to provide for the evaporation of the 
liquid from this region and its recondensation towards 
the ‘cold’ impermeable side of the slab. The T, C, and 
6 fields and the location of the wet zone are ealcuiated 
by the present model through solution of the govem- 
ing equations in the wet zone and one dry zone 
(the region adjacent to the hot side of the slab), and 
matching of the solutions at that boundary. 

The temperature profile in the sample at two differ- 
ent times are shown in Figs. 10 and 11. The present 
model predicts the location of the wet-dry boundaries 
(corresponding to the discontinuous change in the 
temperature gradient) relatively well. Yet, the mea- 
sured temperature profiles in the wet zone exhibit 
larger curvatures than the calculated values. The cur- 
vature of the temperature profile is related to evap 
oration-condensation in the wet zone, and is reflected 
in the value of 11’ in equation (5). Thus, the discrepancy 
between predicted and observed profiles may be 
related to the values of thermophysicai properties 
used in the calculations, where the effect of water on 
parameters such as thermal conductivity of the sample 
are not included. In Fig. 12 the measured final tiquid 
content dist~bution in the slab is compared with the 
theoretical predictions. The disagreement between the 
theoretical and experimental observations may be 
related to the high value of liquid content at the final 
stages of the process which could result in liquid 

0.30 
. oata t 

0.06 - 

0.06 - 
______ *- --_- 

0.04 - 
f 

: 

+ 

4uid cprtrnr L?+8DikWan 

0.02 - lAadkluM* 
: 

00 
1 

0.2 0.4 0.6 0.6 LO 

f 

FIG. 9. Initial liquid content distribution in the experiment 
of Section 5.2. 
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Experiment 

Table 2. Experimental conditions 

Duration 
Material (h) 

Section 5.1. 
Vapor barriers 
on hot and cold 
sides. Initial 
condensate 
c0ntent : 
0.024 [3] 

Section 5.1. 
Vapor barriers 
on hot and cold 
sides. Initial 
condensate 
content : 
0.051 [3] 

Section 5.2. 
Vapor barriers 
on cold side. 
Initial 
condensate 
content : 
Fig. 9 

32 10 t t 

31 10 t t 

43 17 0.35 t 

41 

35 

51 

medium 
density 
fiberglass 
insulation 

medium 
density 
fiberglass 
insulation 

medium 
density 
fiberglass 
insulation 

120 

50 

27 

t Vapor barrier at this location. 

diffusion. Overall, considering that the results of Fig. 
12 are obtained after a long time period through which 
model inaccuracies would accumulate, the agreement 
between the quasi-steady model and data is encour- 
aging. 

6. DISCUSSION 

Unsteady simultaneous heat and mass transfer with 
phase change in an open pore slab is considered and 
analytical solutions for mobile and immobile con- 
densates are presented. The criteria for the validity of 
the analytical solutions are presented in terms of time- 
scales characterizing the diffusive processes and 
motion of wet-dry boundaries. It is shown that for 

25- 

FIG. 10. Temperature protile in the experiment of Section FIG. 11. Temperature profile in the experiment of Section 
5.2, time = 23000 s. 5.2, time = 100000 s. 

immobile condensates the obtained solutions are valid 
up to small liquid contents in the slab. For mobile 
condensates, on the other hand, the range of validity 
of the solutions is controlled by the diffusion 
coefficient of the condensate. The analytical solutions 
are compared with various experimental results con- 
ducted by the authors and others, and reasonable 
agreements are obtained. The major discrepancy 
between modelling and experimental results is related 
to the temperature profile in the wet zone of the slab. 
It appears that the present model underpredicts the 
effect of energy release in the wet zone. This dis- 
crepancy may be related to three factors. First, the 
model does not consider changes in the thermo- 
physical properties with moisture content. This 

45 
, 

l kla 
- OU~li-sl.la” 

UOdd 
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z 
FIG. t2. Final liquid content distribution in the experiment 

of Section 5.2. 

may introduce appreciable errors in high liquid-con- 
tent regions. Second, inhomogeneities in the fiberglass 
insulation may lead to spatial variations in the prop- 
erties of the slab. Third, the assumption of diluteness 
of the air-vapor mixture may be inaccurate. Of these, 
the first appears to exert a larger influence on the 
model predictions. Correction of this model deficiency 
is not undertaken in this study because there are no 
reIiable relationships between liquid content and 
properties of fiberglass insulations. As the present 
solutions involve various thermophysical parameter 
groups, a rigorous sensitivity analysis of the model 
predictions and comparison with other experimental 
data appear to be necessary to identify the required 
improvements of the modei. 
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TRANSFERT VARIABLE DE CHALEUR ET DE MASSE AVEC CHANGEMENT DE 
PHASE DANS DES PLAQUES POREUSES: SOLUTION ANALYTIQUES ET RESULTATS 

EXPERIME~A~ 

R&&--On ftudie analytiquement le transfert variabk de chaleur et de masse monodimensionnel avec 
changement de phase dans une plaque poreuse. On montre que pour une grande ctasse de probltmes, la 
vitesse de d&placement de la zone &he peut Btre dkcouplte du changement des champs de tempkrature et 
d’espkes, et le mkcanisme peut Stre riduit g celui de champs quasi-statiques dans des domaines d&pendants 
du temps. Des rksultats analytiques sont p&e&s pour des condensats mobiles et immobile% Un accord 

raisonnabfe est obtenu entre Its solution analytiques et les don&es expkimentales. 
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INSTATIONARER W&ME- UND STOFFTRANSPORT Me PHASENWECHSEL IN 
PORC)SEN SCHICHTEN-ANALYTISCHE LI)SUNGEN UND EXPERIMENTELLE 

ERGEBNISSE 

Zwammenfawung-In einer porken Schicht wird der instationiire eindimensionale Wgrme- und 
Stofftransport mit Phasenwechsel analytisch untersucht. Es zeigt sich, dag tIir viele Probleme die 
Bewegungsgeschwindigkeiten der feuchten Zone von den zeitlichen Vetinderungen der Temperatur- und 
Konmntrationsverteilung abgekoppelt werden kann. Der instationlre Prozeg kann dadurch auf quasi- 
stationiire Felder in zeitlich variablen Rereichen redtmiert werden. Fur bewegliches und unbewegliches 
Kondensat werden analytische Ergebnisse vorgestellt ; die Ubereinstimmung mit experimentellen Daten 

ist zufriedenstellend. 

HECfALIHOHAPHbI$I TEI-IJIO- M MACCOIIEPEHOC C QA30BbIM I-IEPEXOAOM B 
IIOPHCTbIX CJIHTKAX: AHAJIHTH~ECKHE PEIUEHMII M 3KCIIEPMMEHTAJIbHbIE 

PWYJIbTATbI 

-A-JIHTm ecrn nc4xexye?cn HecratmoHapHb& orurobfepHbtii rermo- H MacconepeHoc c 
@aao~hni nepexonot4 B nopucro~ cmrrXe. IIoXaaaHo, Bra wm 6onbmoro uIacca 3a.~an c~opocrb nepe- 
MCIWHHI BJMXliOit 3OHbl MOXCT 6srra HQBBHCBMa OT HeCMIHOHapHOrO H3MeHeHHB none& Tenure- 
Parypnr it O6pa3LtOB. a nepCXOrpt&i npOt&CC MOBtCT 6m CBCAeH L rBa3HcTamtoHapHbrM nOnaM B 
sa~ucanui~ 01‘ Bpehsewa 06~1acrnx. &encraanema aHamrrwrecwe pcsymraw LUI~ IIOABAXHUX E 
HenOJXBHXtHhtX XOHXCHCBTOB. AHaJUlTB’IecXHe pemeHHX yAOBX~BOpHTeJlbH0 COrJlacylorCa C 3KCnepB- 

MeHTaBbHbtMH AaHHhlMi. 


